Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network

نویسندگان

  • Sunday Iliya
  • Eric Goodyer
  • Mario Gongora
  • John Gow
چکیده

With spectrum becoming an ever scarcer resource, it is critical that new communication systems utilize all the available frequency bands as efficiently as possible in time, frequency and spatial domain. rHowever, spectrum allocation policies most of the licensed spectrums grossly underutilized while the unlicensed spectrums are overcrowded. Hence, all future wireless communication devices beequipped with cognitive capability to maximize quality of service (QoS); require a lot of time and energartificial intelligence and machine learning in cognitive radio deliver optimum performance. In this paper, we proposed a novel way of spectrum holes prediction using artificial neural network (ANN). The ANN was trained to adapt to the radio spectrum traffic of 20 channels and the trained network was used for prediction of future spectrum holes. The input of the neural network consist of a time domain vector of length six i.e. minute, hour, date, day, week and month. The output is a vector of length 20 each representing the probability of the channel being idle. The channels are ranked in order of decreasing probability of being idleminimizing We assumed that all the channels have the same noise and quality of service; and only one vacant channel is needed for communication. The result of the spectrum holes search using ANN was compared with that of blind linear and blind stochastic search and was found to be superior. The performance of the ANN that was trained to predict the probability of the channels being idle outperformed the ANN that will predict the exact channel states (busy or idle). In the ANN that was trained to predict the exact channels states, all channels predicted to be idle are randomly searched until the first spectrum hole was found; no information about search direction regarding which channel should be sensed first.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Learning Automata Based Spectrum Prediction Technique for Cognitive Radio Networks

This paper introduces an application of artificial intelligence in the cognitive radio networks. The Cognitive Radio Network (CRN) provides a suitable environment for Secondary Users (SUs) to share the spectrum with Primary Users (PUs) in a non-interfering manner. In order to determine the availability of PUs bandwidth, SU can sense the spectrum in the channel. But, accurate and constant spectr...

متن کامل

Prediction of scour dimension in the Plunge Pools below Outlet Bucket with Artificial intelligence method

Accurate prediction of sediment scour hole dimensions downstream of hydraulic structures, e.g. the outlet bucket, is a complex and not straight forward engineering problem encountered worldwide. Because of the complexities of the study, its comprehensive, simultaneous including water flow,  sediment and applying all of the effective variables involved in scouring it is not easy possible. Dimens...

متن کامل

Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques

The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...

متن کامل

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression

Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015